McGill Biochemistry Research Awareness Day (RAD) 2016

Research Awareness Day (RAD) is an annual event run by the Biochemistry Undergraduate Society (BUGS), which seeks to inform and inspire students about research being done by some of the foremost professors in McGill’s Biochemistry department.

Professors at this event first gave short presentations about the research being conducted in their labs, and then spent lunchtime answering questions from students. Students attending RAD were then given the chance to meet with three different professors in small groups, affording students the opportunity to ask professors more questions about their research and career path. After lunch, Dr. Young gave a presentation detailing ways for students to get involved in research as an undergraduate. The event ended by transitioning into an intimate cocktail hour, during which there were poster presentations by graduate students in these professors’ labs.

Overall, RAD was a well-structured, successful event that gave insight into the groundbreaking research being done by professors in the Biochemistry department. It provided students the opportunity to learn more about a career in research, and how to get involved as an undergraduate.

Listed below are some of the professors at this event, along with a brief overview of the research that they discussed.

 

Professor Albert Berghuis:

With the rapid development of antibiotic resistance, the need for new antibiotics has become increasingly urgent. This is the focus of Dr. Albert Berghuis’ research. The Berghuis lab uses structural biological approaches to examine various biochemical interactions. The goal is to use techniques such as X-ray crystallography, electron microscopy, and NMR spectroscopy to examine the enzymes with which bacteria destroy antibiotic molecules, and use that knowledge to create next generation antibiotics that can bypass the enzymes but remain biologically active. With pharmaceutical companies stopping antibiotic development due to a decreased profitability, it’s up to independent laboratories such as that of Dr. Berghuis to continue the research in this field. His lab also studies the development of anticancer drugs.

Dr. Kalle Gehring:

The prime focus of Dr. Gehring’s lab is to decipher the structure of various proteins, particularly those involved in neurodegenerative diseases and the ubiquitin system, protein folding in the endoplasmic reticulum, and bacterial virulence factors. A typical project at the Gehring lab consists of growing bacteria to extract and purify a certain protein, crystallizing the protein, and the analyzing its structure using X-ray crystallography and NMR spectroscopy. Recently, the lab is pursuing the study of parkin, a protein involved in a link between mitochondria and neurodegenerative diseases such as Parkinson’s disease.

Dr. Sidong Huang:

Dr. Huang’s research is focused on using a functional genomics approach to study cancer-related mechanism, and to create new treatment strategies for cancer using this information. The current approach to cancer treatment primarily involves chemotherapy and drugs that target cancer cell mutations. Current cancer drugs are not very effective as resistant cancer develops in almost all patients. While the main solution to this problem is through the development of new drugs, Dr. Huang uses another approach. Using functional genomic tools such as shRNA, cDNA and CRISPR libraries, Dr. Huang and his students systematically screen each gene and create custom drug combinations that target those that modulate drug resistance. They also hope to uncover genetic dependencies of cancer pathways which then can be exploited therapeutically. This novel approach hopes to overcome drug resistance in cancer patients and to provide a more effective treatment strategy.

Dr. William J. Muller:

The Muller lab creates and uses murine models of human breast cancer to understand the effects of oncogene activation in normal cells, discover the cooperation between oncogenes and tumour suppressors, and eventually develop preclinical models.

Dr. Bhushan Nagar:

The Nagar lab uses structural techniques to analyse macromolecules, with specific focus on determining innate immunity mechanisms and nucleotide-specific interactions in mRNA silencing.

Dr. Nahum Sonenberg (represented by Argel Valles and Nathaniel Robichaud):

The Sonenberg lab conducts diverse research on two major topics: mRNA translation and translational control of cancer. Through researching how different pathways are affected and alter mRNA translation, the Sonenberg lab hopes to better understand Autism spectrum disorders and psychiatric disorders. Research in translational control of cancer aims to understand how non-cancer cells can promote tumour survival, as well as develop methods of tumour selective killing of cancer cells.

Dr. Jose Teodoro:

The Teodoro lab aims to determine the role that transcription factor p53 plays in tumour angiogenesis. Angiogenesis is a natural process in human development and wound healing, but in tumours, angiogenesis allows the cancer cells to have access to nutrients that otherwise would be inaccessible. The Teodoro lab also hopes to use virus target specificity in cancer treatment.

Dr. Ian Watson:

The Watson lab aims to translate the genome of melanoma, the deadliest form skin cancer, in hopes of developing new therapeutic strategies.

Dr. Jason Young:

The Young lab focuses on the function of chaperones in protein folding, with emphasis on the roles of misfolded proteins in neurodegenerative diseases such as Parkinson’s disease. The function of the Hsp70 chaperone system and its role in disease states are of particular interest.

Advertisements

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s